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Although measurement error in covariates has been studied in debth, many applied scientists still do not (know how to) deal with it.
• We aim to develop a method for viewing missing data as a limiting case of measurement error, allowing these two problems to be 

handled in the same framework. 
• A Bayesian hierarchical structure provides a natural flexible framework in order to also use prior knowledge about the measurement error.
• The methods can then be efficiently implemented for potentially complex models using integrated nested Laplace approximations

(INLA)(Rue et al., 2009, Muff et al., 2015).

𝜂! = 𝛽" + 𝛽#𝑥! + 𝒛𝒊𝜷𝒛 + 𝜀! model of interest
𝑤! = 𝑥! + 𝑢! error model
𝑥! = 𝛼" + 𝒛𝒊𝜶𝒛 + 𝜀!

(#) exposure model

Model of interest: 𝜂! is the linear predictor in a generalized 
linear model (GLM), given the true covariate values for 𝑥!, as 
well as other covariates 𝒛𝒊, which are observed without error. 
Error model: 𝑢! is the error in the observed variable 𝑤!, where 
𝑢! ∼ 𝒩 0, 𝜎#!

$ . 
Exposure model: Describes the true covariate 𝑥!, which 
possibly depends on the correctly observed covariates 𝒛𝒊. 
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1. MOTIVATION

3. HIERARCHICAL CLASSICAL ERROR MODEL
(Muff et al., 2015, Goldstein et al., 2018)
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Figure 1: The continuum of measurement error, with observation-level priors illustrated in the 
top row. From Blackwell et al. (2017)

𝑤! = 𝑥! + 𝑢!,

𝑢! ∣ 𝑥! ∼ 𝒩 0, 𝜎() . 
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5. FUTURE WORK
• MEASUREMENT ERROR AND MISSING DATA IN INLA R-

PACKAGE: The described work will be implemented in 
an R-package with extensive documentation.

• DIFFERENT ERROR TYPES: Berkson errors and non-
differential errors will also be explored.

• SHOULD MEASUREMENT ERROR BE ACCOUNTED FOR AT 
ALL? In some cases, modelling the measurement error 
will add unneccesary complexity. An additional R-
package will be created to aid in evaluating the severity 
of the measurement error using simulation tools.

• CATEGORICAL COVARIATES WITH MEASUREMENT 
ERROR: It is currently not easy to account for categorical 
measurement error in INLA.

4. EXAMPLE: SIMULATION STUDY
𝑋%
𝑉
𝑋&

∼ 𝒩 0, Σ , Σ =
1 0.5 0.5
0.5 1 0.5
0.5 0.5 1

𝑋$ = 20, if 𝑉 < 0
1, otherwise

𝑌 = 1 + 𝑋% + 𝑋$ + 𝑋& + 𝜀, 𝜀 ∼ 𝒩 0, 1

Measurement error: Missing data:

𝑊 = 𝑋% + 𝑈, 𝑈 ∼ 𝒩 0, 0.25 20% of observations in 𝑊 are removed

Hierarchichal model to account for measurement error and missing data: 

𝑦! = 𝛽' + 𝛽%𝑥%! + 𝛽$𝑥$! + 𝛽&𝑥&! + 𝜀! model of interest
𝑤! = 𝑥%! + 𝑢! error model
𝑥%! = 𝛼' + 𝛼%𝑥$! + 𝛼$ 𝑥&! + 𝜀!

()") exposure model
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Figure 2: The estimated coefficients for models not accounting for measurement 
error (in red), and one accounting for measurement error (in green), fitted for 200 
simulated datasets of 1000 observations each. True coefficients are 𝛽# = 𝛽$ = 𝛽% = 1. 


